This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright
Research paper

Holocene upper tree-limits of *Pinus* section *sylvestris* in the Western Alps as evidenced from travertine archives

Nicolas Fauvart a,c,1, Adam A. Ali a,d,⁎,1, Jean-Frédéric Terral a,d, Paul Roiron a,d, Olivier Blarquez a,b, Christopher Carcaillèt a,b

a Centre de Bio-Archéologie et d'Ecologie (UMR5059, CNRS/UM2/EPHE/INRAP), Institut de Botanique, Université Montpellier 2, 163 rue Broussonet, 34090 Montpellier, France
b Paleoenvironments and Chronoecology (PALECO EPHE), École Pratique des Hautes Études, Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France
c Centre d’Etude de la Forêt (CEF), Université du Québec à Montréal CP 8888, succ. Centre-Ville Montréal, Québec, Canada H3C 3P8

Abstract

The postglacial dynamics of *Pinus sylvestris*, *Pinus mugo* and *Pinus uncinata* are poorly documented in the Alps due to a lack of precise taxonomic resolution. We present past altitudinal distribution of these pine species, at a local scale, based on morphometric and taxonomic analyses of fossil cone imprints preserved in travertine deposits from the mountain and subalpine belt in the Western Alps. We found that *P. sylvestris* and *P. uncinata* have been present in the study area since at least 11,500 calibrated yr BP. Until 8500 cal yr BP, these conifers occupied likely a wide altitudinal range, favoured by the establishment of drier and warmer climate conditions compared to present-day. After this period, the dynamics and spatial distribution patterns of *P. sylvestris* and *P. uncinata* were strongly shaped by the expansion of more competitively superior conifers that had contributed to their local extinction from several sites and the fragmentation of their population.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the Alps and other European mountain ranges, the *Pinus* species belonging to the section *sylvestris*, including *Pinus sylvestris* L., *Pinus mugo* Turra, and *Pinus uncinata* Mill, cover large overlapping areas and have sympatric populations (Jalas and Suominen, 1973; Richardson, 1998). The extent of their modern distribution patterns underlines the fact that they play a key role in the functioning of European forests, produce high biomass, and have contributed to carbon sequestration for several millennia. Their temporal and spatial distribution patterns are the result of long-term processes controlled by glacial refugia, climate variation, and cultural activities (Burga, 1988; Cheddadi et al., 2006). However, very little is known about the ecological mechanisms that have controlled their specific pattern of distribution since the last full glacial period, in particular at their respective upper altitudinal limits. This lack of data is because it’s difficult to discriminate pine species belonging to the section *sylvestris* from pollen proxy (Reille, 1992; Schmidt et al., 2002) and impossible by wood anatomy features (Schweingruber, 1990). Although *P. sylvestris* can be distinguished from *P. mugo* and *P. uncinata* from stomata and cuticle characteristics of their needles (Boratyńska and Bobowicz, 2001; García Álvarez et al., 2009b), there have been doubtful taxonomic identifications in previous palaeoecological investigations in locations where these pine species are sympatric. Most previous attempts to trace the past distribution of *P. section sylvestris* have most relied on the analysis of pollen data; however, the findings have rarely been supported by records of plant macroremains (e.g. Pons et al., 1992; Gobet et al., 2005; Tinner and Kaltenrieder, 2005; Stähli et al., 2006). Moreover, *Pinus* pollen usually travels over distances of many kilometres (≥10 km) from source populations, which can potentially cause palaeovegetation reconstructions to be erroneous (Birks and Birks, 2000). Adding the fact that landscape heterogeneity and environment parameters such as soil property or exposure induce an important variability in species distribution (Ozkanda, 1985; Körner, 1998), multi-proxy approaches at different spatial scales are a requirement to improve our understanding of past and future distribution of these pine species in response of climate change and land-use modifications (Botkin et al., 2007).

The present study aimed to reconstruct the past distribution of *P. section sylvestris* in the western Alps, based on cone imprints and needles enclosed in travertine archives. These calcareous deposits allow to discuss at local scale about past distribution of ligneous species (Ali et al., 2003a, 2003b). However discontinuity in carbonate deposition prevents any high temporal resolution approaches. To improve the fossil cone identification, we developed a morphometric method based on modern specimens, then applied this method to fossil cones. We discuss

⁎ Corresponding author at: Centre de Bio-Archéologie et d’Ecologie (UMR5059, CNRS/UM2/EPHE), Institut de Botanique, Université Montpellier 2, 163 rue Broussonet, 34090 Montpellier, France
1 E-mail address: ali@univ-montp2.fr (A.A. Ali).
2 Co-first authors.

0034-6667/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.revpalbo.2011.10.003
the spatial distribution of these pines with respect to the dynamics of other coniferous species currently found in the region at the upper forest limit; this was inferred from terrestrial macroremain studies in subalpine sediments.

2. Materials and methods

2.1. Modern cone sample characteristics

Modern reference material consisted of 140 cones collected from distinct populations of *P. sylvestris*, *P. uncinata* and *P. mugo*, in Slovenia, Italy and France (Table 1). The identification of modern specimens was based on tree and cone morphology (Rameau et al., 1993; Lauber and Wagner, 2001). Two populations were sampled per species and five trees were sampled from each population, except for *P. mugo* from the Col du Mont-Cenis on the French/Italian border, where only three individuals with mature cones were found (Carcaillet et al., 2009). Five cones were collected from each tree.

Female *P. sylvestris* cones are symmetrical with an umbo centred on a thin apophysis or scale (Fig. 1a). Female *P. uncinata* cones are asymmetrical with a hook-shaped umbo at the apophysis apex (Fig. 1b). However, the concave face of the cones (right side of the design) generally presents an umbo centred on a thin apophysis. The female *P. mugo* cones are symmetrical, also with an umbo centred on a thin apophysis (Fig. 1c), but the cones are smaller and rounder than those of *P. sylvestris* (Christensen, 1987).

2.2. Identification of cones and needles

In the western inner Alps, valleys contain travertine archives rich in plant-imprints (e.g. Ali et al., 2005a). Cone and needle remains of *Pinus* are very common within these calcareous accumulations that result from the bicarbonate saturation of water streams and springs (Brotto, 1986). The accumulation of these natural deposits requires stable environmental conditions (high temperature and precipitation) and is optimal within forest areas (Magnin et al., 1991; Ali et al., 2003b). Travertine deposits were sampled both in France and Italy, between 1340 m and 2200 m a.s.l. (Fig. 2; Table 2). Fossil specimens were extracted from travertine blocks using a hammer and chisel. Cone moulds were made of the collected specimens using silicon liquid (Silastic —

Table 1: Localization of modern collections.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Population</th>
<th>Localisation</th>
<th>Lat.</th>
<th>Long.</th>
<th>Alt. (m a.s.l.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus sylvestris</td>
<td>Ilirska Bistrika</td>
<td>Slovenia</td>
<td>45°34′10″ N 14°17′56″ E</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Termignon</td>
<td>Savoy, France</td>
<td>45°16′64″ N 08°50′10″ E</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>Pinus mugo</td>
<td>Ilirska Bistrika</td>
<td>Slovenia</td>
<td>45°33′55″ N 14°19′02″ E</td>
<td>2250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mont Cenis</td>
<td>Savoy, France</td>
<td>45°17′40″ N 06°56′98″ E</td>
<td>2200</td>
<td></td>
</tr>
<tr>
<td>Pinus uncinata</td>
<td>Parco delle Alpi marittime</td>
<td>Piedmont, Italy</td>
<td>44°12′12″ N 07°29′27″ E</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Termignon</td>
<td>Savoy, France</td>
<td>45°16′33″ N 06°50′53″ E</td>
<td>1900</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Cones of *Pinus sylvestris* (A), *Pinus uncinata* (B) and *Pinus mugo* (C) showing their principal morphological features.

Fig. 2. Localization of the travertine sequences in the Western Alps. 7: Termignon (Maurienne valley, France); 4: Saint-Genix (Maurienne valley, France); 2: Mont-Cenis (Savoy, France); 1 4: Grand Puy (Val di Susa, Italy); 5: San Dominico (Val di Susa, Italy); 6: Selle (Val di Susa, Italy); 3: Prafarnas (Queyras massif, France); 8: Tioures (Queyras massif, France).
A comparison with modern specimens. They were unidentifiable from direct morphological evidence, i.e. they were unidentifiable from direct morphological evidence.

Total, 7000 measurements were made, 2500 for cone traits. It was determinate by the stabilisation of the mean. In a second time, the ten measurements taken on the apophyses of modern cones were run in a discriminant analysis (DA) with the PROC DISCRIM procedure in SAS. This procedure estimates the probabilities of affiliation of each observation (apophysis features) into each group of pine species. Then, all fossil cones, which are describe by the mean value of each apophysis traits, were included in the DA as additional individual that could be assigned to a distinct group.

3.4. Statistical analysis

In a first time, descriptive statistics (means, standard deviations) were obtained and one-way analysis of variance (ANOVA) using GLM procedure in SAS (v. 9.2, SAS Institute, Cary, NC) was performed to determine if there was any statically significant difference among pine species for each one of apophysis traits.

In a second time, the ten measurements taken on the apophyses of modern cones were run in a discriminant analysis (DA) with the PROC DISCRIM procedure in SAS. This procedure estimates the probabilities of affiliation of each observation (apophysis features) into each group of pine species. Then, all fossil cones, which are describe by the mean value of each apophysis traits, were included in the DA as additional individual that could be assigned to a distinct group. The affiliation probability (p) of each fossil cone to the three pine groups is calculated using Mahalanobis distances between the fossil cone and the centroids of the three pine groups. If p ≥ 0.80, the allocation was considered with caution (e.g. P. sylvestris). Fossil specimens with a p-value <0.70 were not classified.

2.5. Isotopic dating

Thirteen 230Th/234U and one 14C AMS radiometric datings were performed on the different travertine sequences enclosing pine macroremains (Table 4). Th/U measurements performed on calcareous facies were required to confirm that there was no contamination by Thorium of different ages by elemental migration through the travertine layers (Quinif, 1989; Eikenberg et al., 2001). Possible contamination is revealed by values of the 230Th/232Th ratio. Values up to 17 (Bischoff et al., 1988) or 20 (Ivanovich and Harmon, 1992) indicate that detrital contamination by Thorium is negligible, thus allowing the use of the Th/U dating securely. It is important to note that all dates obtained in the present study were corrected to minimise dating errors by taking into account any potential contamination (Fietzke et al., 2005). Th/U measurements can be directly compared to the calendar chronology because there is no reservoir effect.

The unique AMS 14C was obtained from charcoal fragments of P. sylvestris, calibrated against dendrochronological years by the CALIB program version 6.0 (Stuiver and Reimer, 1993) based on the...
3. Results and interpretations

3.1. Morphometric analysis of the modern reference material

Interpretation of the ANOVA results indicates that significant differences exist between pine species in each apophysis traits (Table 5). All traits seem to be relevant to discriminate pine apophyses.

Based on DA, 82.2% of the cone scales from the modern dataset were accurately classified (Table 6). Among these, 94.0%, 89.6% and 65.2% of the P. mugo, P. uncinata and P. sylvestris cones were correctly classified, respectively. These percentages reflect the quality of our discriminative model. Several apophyses of P. uncinata were classified as P. mugo (n = 38) or P. sylvestris (n = 49). Consequently, the model’s ability to identify the right species from apophyses is of 81.7%, 82.1% and 82.7% for P. mugo, P. sylvestris and P. uncinata respectively (Table 6). These results indicate that identification of scales of P. mugo, P. uncinata and P. sylvestris is relatively reliable. The discriminant functions created are presented in Table 7.

3.2. Allocation of fossil cones

In total, 181 fossil cones were extracted from the travertine sequences. Among them, 131 cones exhibited hook-shaped apophyses and were morphologically identified as P. uncinata. So, only 50 fossil specimens displayed a centred umbo with thin apophyses, and required morphometric analysis to be identified. All fossil cones recovered in Tioures (n = 23) and St-Genix (n = 7) had thick hook-shaped apophyses, and belonged to P. uncinata. Most specimens collected in the travertines from the Col du Mont-Cenis (n = 79) and Termignon (n = 10) were P. uncinata. At San Dominico and Grand Puy, 4 and 8 fossil cones had thick hook-shaped apophyses, respectively.

Identification of the 50 fossil, and their associated allocation probabilities (Table 8) indicate that most specimens were P. sylvestris (n = 23) and P. uncinata (n = 14) with p≥0.80. Two cones were assigned as P. cf. sylvestris (0.70–p<0.80), three as P. cf. uncinata and one as P. cf. mugo. The remaining 7 fossil cones (of the 181 cones) were not classified as their allocation probability was below the 0.70 threshold probability.
3.3. Temporal and altitudinal distributions

Dating showed that the cone imprints were fossilised between 11,500 and 1400 yr BP (Table 4). *P. sylvestris* and *P. uncinata* developed at the Late-Glacial/Holocene transition at San Dominico ca. 1340 m a.s.l. (Fig. 4a; see Appendix A S1) in supporting information). At 9800 yr BP, *P. uncinata* reached altitudes around 2200 m a.s.l. (Fig. 4a) near the Tioures sequence (see supporting information). *P. sylvestris* and *P. uncinata* were present up to 2000 m a.s.l. around Prafranas, where sequences dated back to 8900 yr BP (Table 4). Macroparts of these two pines were less abundant and frequent in the travertine sequences that were dated after 8000–7000 yr BP (Fig. 4a). Currently, *P. uncinata* is absent at Tioures (2200 m), Grand Puy (1815 m) and St-Genix (1695 m), whereas *P. sylvestris* is absent around the Prafranas and Grand Puy sites. Our data were insufficient to allow us to precisely identify when these local extinctions occurred.

4. Discussion

Our data show that both *P. sylvestris* and *P. uncinata* were already present within upper forest ecosystems at the beginning of the Holocene in the western Alps. However, there were no definite *P. mugo* trees recorded, even though a previous analysis based on the same material concluded that this pine did occur near the San Dominico travertine during the Late-Glacial/Holocene transition (Ali et al., 2006). In our study, these fossil specimens (4 samples in total) were classified as *P. sylvestris* or were unclassified. It is important to stress that the unclassified specimens collected at the different sites had morphological features that were intermediate between the tree pines species, which could be a result of hybridization. Indeed, most travertine deposits are located in areas where populations are sympatric or nearby, favouring hybridization and introgression; this has already been reported for *P. sylvestris* and *P. mugo* (Wachowiak and Prus-Głowacki, 2008) and for *P. sylvestris* and *P. uncinata* (Probst and Rouane, 1984; Dzialuk et al., 2009).

4.1. Early Holocene upper tree-line composition

Between 11,500 and 8500 yr BP, we found a wide altitudinal spread of *P. sylvestris* and *P. uncinata*, the latter colonising the highest altitudes up to at least 2200 m. *P. sylvestris* and *P. uncinata* were the main tree species found within travertine layers, suggesting that these pines grew actively during the early Holocene afforestation period in mountain ecosystems in the western Alps. These conifers are well-adapted to colonise young soils, which are poorly differentiated from the bedrock; such soils characterised the beginning of the Holocene (Mourier et al., 2010). Our results match with pollen-based reconstructions indicating that *Pinus* section *sylvestris* began to spread across the Alps between 14,000 and 12,500 yr BP (Gobet et al., 2005; Cheddadi et al., 2006), from peripheral glacial refugia and/or nunatak glacial refugia (Birks and Willis, 2008; Holderegger and Thiel-Egenter, 2009). Our results also indicate that during the Late-Glacial–Holocene transition environmental conditions were suitable for trees to adopt sexual reproduction with production of female cones. Palaeo-climatic reconstructions (Fig. 4de) display that up to 8500 yr BP, the climate was drier (Ortu et al., 2008) and warmer than today (Heiri et al., 2004; Renssen et al., 2009). These conditions were likely to be suitable for sexual reproduction and assisted in the altitudinal range extension of *P. sylvestris* and *P. uncinata*. In the Swedish mountains, Kullman and Kjällgren (2000) also reported an exceptional altitudinal spread of *P. sylvestris* during the earliest part of the Holocene, probably favoured by a warmer and more continental climate.

Our data show that in the early Holocene the local vegetation in the study region was also composed of scattered individuals of *P. cembra*, *Abies alba*, *Larix decidua*, *Betula pendula*, *Populus tremula*, *Acer opalus* and *Salix sp* (see supporting information). These findings illustrate that the subalpine tree diversity and structuring were rapidly established after the deglaciation processes.

4.2. The development of competitively superior trees

P. uncinata has totally disappeared from sites like Tioures (2200 m a.s.l.), Grand Puy (1815 m) and St-Genix (1695 m), and *P. sylvestris* from Prafranas (2000 m) and Grand Puy. This highlights the fact that a local extinction of these two pine species occurred during the middle and late Holocene. In the same valley where Tioures and Prafranas sequences were sampled (Queyras Massif), other subalpine travertines containing charcoal fragments and needle imprints revealed abundant *P. cembra* (Fig. 4b; Ali et al., 2005b) and cf. *L. decidua* remains. However, the identification of *L. decidua* from charcoal records is uncertain, it being hard to distinguish from *Picea abies* (Talon, 1997). Furthermore, dating of these sequences has shown that *P.
cembra became locally abundant in the Queyras Massif between 8000–5000 yr BP as data from pollen analyses (Fauquette and Talon, 1995; Nakagawa, 1998; Nakagawa et al., 2000; Muller et al., 2006). This development of P. cembra at the middle of the Holocene is likely related to podzolization processes and the development of more mature soils compared to the early Holocene (Mourier et al., 2010). From 5000 to 3000 yr BP, the vegetation was characterised by mixed woodlands of P. cembra/L. decidua stands. Since ~4000 yr BP, L. decidua became the dominant taxa in these continental valleys of the inner Alps (Ali et al., 2005a), possibly in response to human-induced disturbance for agro-pastoral purposes. The same ecological transformation also occurred in the northern inner Alps according to sedimentary plant macrofossils (Fig. 4c) analysed near the sites of St Genix and Grand Puy, where A. alba, was succeeded by P. cembra and L. decidua. Hence, these ecological changes in the vegetation have clearly contributed to the local extinction, or to P. uncinata and P. sylvestris becoming rarer in subalpine ecosystems.

5. Conclusion

Here the development of morphometric approach, based on the traits size apophyses of cone pines, proved to be an excellent approach to identify more accurately macrofossils of fossil cones, compared to the qualitative approach, which was used in previous studies.

This study has improved our understanding of the historical biogeography of P. sylvestris and P. uncinata in the western central Alps. P. sylvestris and P. uncinata were dominant in terms of cones and needles within travertine deposits during the early Holocene. This suggests that these species composed the initial woodlands after the retreat of the alpine glaciers, with P. uncinata colonising the highest elevations up to at least 2200 m a.s.l. After 8000 yr BP, the expansion of other competitively superior conifers such as P. cembra likely prevented the development of P. sylvestris and P. uncinata in subalpine ecosystems and resulted in their local extinction at several sites. The altitudinal distribution and abundance of P. section sylvestris apparently results firstly from climate control, and secondly from competitive relationships with other tree species.

Acknowledgements

Financial support was provided to C.C. by the Institut National des Sciences de l’Univers (INSU, France) through the CONSECOL (ECCO/INSU) and PALEOFIRE (Arctem/INSU) program, the Centre National de la Recherche Scientifique (CNRS, France), and by a post-doctoral grant from the Ecole Pratique des Hautes Études (EPHE, France) to A.A.A. We thank G. Fioraso (CNR, Italy) and J.-L. Guendon (CNRS, France) for assisting with field surveys and descriptions of the travertine outcrops. We thank Stéphane Daigle (CEF, Université de Montréal, Canada) for statistical support.

Appendix A. Supplementary data

Supplementary data to this article can be found online at doi:10.1016/j.revpalbo.2011.10.003.

References

